AFLAS®
(TFE/P, FEPM)
Aflas® or TFE/P is a member of a recent generation of fluoroelastomers formulated specially to provide unique properties for specific applications. The primary uses for Aflas® are in the oil/gas, chemical processing, pharmaceutical and automotive industries. It can be crosslinked (cured) using a variety of systems, but generally peroxides are used to provide the best all-around environmental resistance. A unique property of TFE/P is, that at very low temperatures (down to -65°F), it takes on leathery consistency and remains functional, unlike many other rubbers, which can often become brittle and shatter.

Composition:
Medium density copolymer of tetrafluoroethylene and propylene.

<table>
<thead>
<tr>
<th>Physical Properties:</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elongation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cold resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compression set</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flame resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas permeability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chemical Resistance:*
<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated bases</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dilute acids and bases</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ozone</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Weather</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steam</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radiation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phosphate esters</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxidation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sour Oil & Gas</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethers</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aliphatic hydrocarbons</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ketones</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Operating Temperature:**
-75° to +400°F

Butyl Rubber
(IIR)
Butyl is a specialty rubber more frequently specified for its physical properties than chemical resistance. It has excellent shock absorption and vibration damping capabilities, as well as good electrical properties. Butyl’s unusually low gas permeability makes it ideal for vacuum applications, while its high degree of saturation makes it inherently resistant to atmospheric elements such as ozone and UV radiation. Additionally, butyl is thermally stable when cured with phenoformaldehyde resin, and has a relatively high coefficient of friction.

Composition:
Medium density copolymer of isobutylene and a small amount of isoprene.

<table>
<thead>
<tr>
<th>Physical Properties:</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elongation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cold resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compression set</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flame resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas permeability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chemical Resistance:*
<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Weather</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ketones</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silicone fluids</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Petroleum oils and fuels</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Operating Temperature:**
-65° to +250°F

Carboxylated Nitrile
(XNBR)
Carboxylated nitrile, or XNBR, is produced by adding a carboxylic acid side group to nitrile rubber, thereby adding more crosslinking sites than traditional NBR. As a result, solvent swell and abrasion resistance are significantly improved, as well as modulus, tensile strength and tear resistance. Accordingly, XNBR is frequently specified in dynamic applications such as rod seals and wipers. Water resistance, resilience and some low temperature properties are somewhat diminished.

Composition:
Medium density terpolymer of acrylonitrile, butadiene, and a diene monomer containing carboxylic acid.

<table>
<thead>
<tr>
<th>Physical Properties:</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elongation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cold resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compression set</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flame resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas permeability</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chemical Resistance:*
<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum oils and fuels</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silicone lubricants</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LP Gas</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solvents</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxidation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dilute acids and bases</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steam</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Weather</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amines</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethers</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Operating Temperature:**
-10° to +250°F

Where rubber compounds abound.

Why make the rounds searching for rubber compounds when they’re all right here in one convenient place? High Performance Seals has developed nearly 500 different rubber compounds, in a variety of materials and hardnesses, to satisfy virtually every conceivable requirement. And if your application requires unique properties and/or capabilities, we’ll develop a compound for you! This brochure describes the most commonly specified rubber compounds. As such, the information presented here is necessarily general in nature and abbreviated. For more specific information or expert advice, contact us and speak directly to an experienced compound professional. Please call us at 877.796.0123 or visit www.highperformanceseals.com.
CHLOROPRENE RUBBER
(CR, polychloroprene, Neoprene)
Chloroprene (commonly known as "neoprene") is one of the oldest synthetic elastomers. Introduced in 1933, it is used in a variety of applications due to its ability to resist both oils and oxidation. The oil resistance, however, depends significantly on the type of oil. Neoprene has good resistance to naphthenic and paraffinic oils of high molecular weight, but swells excessively in aromatic oils of low molecular weight. Vulcanizates of neoprene display little change after prolonged outdoor exposure. Because of its chlorine content, flame resistance is superior to that of most other rubbers, and its high structural regularity displays strain induced crystallization resulting in high tensile strength. Neoprene is also especially well-suited for rubber-to-metal bonding.

Composition:
Produced from the chloroprene monomer, a combination of chlorine and butadiene. Medium density.

Physical Properties:* Poor Fair Good Excellent
Tensile strength •
Elongation •
Cold resistance •
Compression set •
Tear resistance •
Abrasion resistance •
Flame resistance •
Gas permeability •

Chemical Resistance:* Poor Fair Good Excellent
Ozone •
Weather •
Dilute acids •
Dilute alkalis •
Refrigerants •
Water •
Steam •
Aromatic & oxygenated solvents •

Operating Temperature:** -40° to +225°F

ETHYLENE PROPYLENE RUBBER
(EPDM, EP, Nordel IP™, Kel-Tan®)
Ethylene-Propylene rubber is a low cost, versatile compound that functions well in both low and high operating temperature environments. Moderate to good resistance to a variety of chemicals make it the compound of choice for a variety of applications. EPDM's chemically saturated polymer chain accounts for its superior resistance to degradation. However, use is limited by its incompatibility with petroleum based fluids. EPDM can be cured with sulfur or peroxide, although applications with high heat requirements should use peroxide cured compounds. Peroxide curing also produces vulcanizates with superior compression set than that of the sulfur cures. Reinforcing agents are especially important in ethylene-propylene polymers because they lack gum strength. Therefore, high tensile and tear properties are achieved through high loading. EPDM is a terpolymer, not to be confused with the copolymer EPM, which can only be peroxide cured, due to its highly saturated polymer backbone.

Composition:
Low density terpolymer of ethylene, propylene, and a small amount of a diene.

Physical Properties:* Poor Fair Good Excellent
Tensile strength •
Elongation •
Cold resistance •
Compression set •
Tear resistance •
Abrasion resistance •
Flame resistance •
Gas permeability •

Chemical Resistance:* Poor Fair Good Excellent
Ozone •
Weather •
Dilute acids •
Dilute alkalis •
Oxygenated solvents •
Alcohols •
Gasoline •
Petroleum oils and greases •

Operating Temperature:** -60° to +250°F

FLUOROCARBON RUBBER
(FKM, FPM, Viton®, Dai-Eli®, Tecnoflon®)
Fluorocarbon (or FKM) rubber is a widely used, premium grade compound especially well suited to applications where prolonged exposure to petroleum oils at high operating temperatures is encountered. Such properties make it especially useful in automotive "under-hood" applications. Additionally FKM is particularly resistant to swell in the highly aromatic, non-leaded, additive loaded gasoline mandated by today's environmental regulations. Its low temperature deficiencies can be overcome somewhat by special compounding. Fluorine content is generally in the 64% to 70% range. Fluorocarbon rubber is exceptionally resistant to embrittlement when exposed to hot heat over long periods of time; it is considered to be serviceable indefinitely when exposed continuously to 400°F dry heat. The cure system of choice for most fluorocarbon compounds is bi-sphenol, as it provides the best combination of compression set and improved steam and acid resistance. Diamine and peroxide cure systems can also be employed. Fluorocarbon vulcanizates are very resistant to ozone and atmospheric aging.

Composition:
High density copolymer of vinylidene and hexafluoropropylene.

Physical Properties:* Poor Fair Good Excellent
Tensile strength •
Elongation •
Cold resistance •
Compression set •
Tear resistance •
Abrasion resistance •
Flame resistance •
Gas permeability •

Chemical Resistance:* Poor Fair Good Excellent
Ozone •
Weather •
Dilute acids •
Dilute alkalis •
Petroleum oils •
Solvents •
Steam •
Ketones •
Ammonia •

Operating Temperature:** -75° to +400°F

FLUOROSILICONE RUBBER
(FVMQ, Silastic FSR®, FSE®)
Fluorosilicone rubber is an inorganic "hybrid" elastomer which combines the wide temperature range spectrum of silicone with some of the chemical resistance of fluorocarbon rubber, accomplished by the addition of fluorine to the alkyd groups of silicone elastomers. Primary use is in fuel delivery systems. Fluorosilicone rubber offers the best low temperature properties of any oil resistant rubber. Like all compounds based on silicone rubber, fluorosilicones have relatively low tear strength, abrasion resistance, and tensile strength, and therefore are generally not suitable for dynamic applications.

Composition:
Low density fluorinated silicone rubber.

Physical Properties:* Poor Fair Good Excellent
Tensile strength •
Elongation •
Cold resistance •
Compression set •
Tear resistance •
Abrasion resistance •
Flame resistance •
Gas permeability •

Chemical Resistance:* Poor Fair Good Excellent
Ozone •
Weather •
Water •
Dilute acids •
Dilute alkalis •
Silicone oils •
Hydrocarbon fuels •
Petroleum oils •
Refrigerants •
Steam •
Ketones •

Operating Temperature:** -70° to +400°F

ETHYLENE ACRYLIC RUBBER
(AEM, Vamac®)
Ethylene acrylic, or AEM rubber is generally used in applications requiring a tough rubber that combines good oil resistance, with heat resistance greater than nitrile or neoprene, and at a cost well below that of many silicone or fluorocarbon rubbers. Good low temperature properties are imparted by the ethylene content, while the acrylate provides a considerable degree of oil resistance. Ethylene acrylic rubber is highly saturated, and as a result exhibits excellent resistance to ozone and weathering. Ethylene acrylic compounds are also well suited for applications requiring continuous exposure to hot (300°F) aliphatic hydrocarbons, including most common automotive lubricants and hydraulic fluids. Water and ethylene glycol resistance is good, but softening can occur after long term exposure above 200°F. AEM's good damping characteristics make it well suited for vibration mounts, pads, and isolators.

Composition:
Medium density copolymer of ethylene and methyl acrylate. May also contain a small amount of a third monomer containing carboxylic acid to provide active cure sites in the polymer chain.

Physical Properties:* Poor Fair Good Excellent
Tensile strength •
Elongation •
Cold resistance •
Compression set •
Tear resistance •
Abrasion resistance •
Flame resistance •
Gas permeability •

Chemical Resistance:* Poor Fair Good Excellent
Ozone •
Weather •
Petroleum oils •
Automatic transmission fluid •
Water •
Dilute acids •
Dilute alkalis •
Steam •

Operating Temperature:** -40° to +250°F

Operating Temperature:** -40° to +225°F

Operating Temperature:** -30° to +300°F

Operating Temperature:** -60° to +300°F
HIGHLY SATURATED NITRILE (HNBR, HSN, NBM, Therban®, Zetpol®)

Hydrogenation of nitrile rubber removes much of the unsaturation in the nitrile polymer chain to make it far less vulnerable to attack by heat, ozone, and oxygen. In fact, due to superior oil and temperature resistance, highly saturated nitrile can sometimes be substituted for more costly fluorocarbon rubber. It is frequently used in automotive air conditioning systems employing R-134a refrigerants. HNBR can be either peroxide or sulfur cured, depending on the degree of saturation achieved by the hydrogenation process, but peroxide is almost always used due to the good heat stability properties of the peroxide crosslinks. It can be compounded for both low and high temperature use.

Composition:
Formed by hydrogenating the nitrile copolymer of butadiene and acrylonitrile. Medium density.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Flame resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Petroleum oils
- Automotive refrigerants
- Automatic transmission fluid
- Sour crude oil
- Oxygenated fuels
- Ozone
- Weather

Operating Temperature:**
-25° to +320°F

NATURAL RUBBER (NR, Hevea)

Natural rubber, or NR, was the first commercially viable elastomer ever developed, and is still the only non-synthetic rubber in widespread use. In fact, natural rubber currently accounts for almost 40% of the world’s elastomer consumption, as it is frequently blended with other rubbers to derive an ideal combination of properties, especially in automotive tire production. Derived from a liquid of the Hevea tree, NR latex is a low cost material that, when processed into dry rubber, exhibits excellent physical properties due to its high structural regularity. It is ideal for applications that require good resistance to abrasion, gouging and cut growth. Also, because it experiences little heat buildup during flexing, it is also commonly specified when shock and dynamic load requirements are deemed critical. Natural rubber is tough, long lasting and can be compounded for service at temperatures as low as -65°F. It is also easily bonded to metal and fabrics.

Composition:
Coagulated, dried rubber derived from the latex of the Hevea Brasiliensis tree. Low to medium density.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Flame resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Water
- Air
- Oxidation
- Acetal
- Dilute acids and bases
- Steam
- Radiation
- Oil
- Gasoline
- Hydrocarbon solvents
- Sunlight
- Ozone

Operating Temperature:**
-60° to +225°F

NITRILE RUBBER (NBR, Buna N, Paracril®, Nipol®)

On a cost basis, nitrile rubber is the least expensive of the oil resistant elastomers. As a result, nitrile is one of the most widely used rubber materials, due to its combination of low cost, resistance to many chemicals, and good physical properties. The acrylonitrile content of this highly polar elastomer provides excellent oil and gas permeation resistance, which increases as the level of ACN increases. However, an increase in the acrylonitrile content compromises low temperature flexibility, and increases compound hardness. Typical ACN content ranges from 18% to 50%. Nitrile should not be exposed to direct sunlight or moderate to high levels of atmospheric ozone, as rapid deterioration will result. However, NBR will accept many anti-degradants, most notably PVC, which offer some degree of improvement of these deficiencies. Nitriles are usually sulfur cured, but peroxide curing is also possible, resulting in improved compression set.

Composition:
Medium density copolymer of butadiene and acrylonitrile.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Flame resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Water
- Petroleum oil
- Silicone lubricants
- Dilute acids
- Dilute alcohols
- Hydraulic fluids
- Transmission fluid
- Steam
- Ozone
- Weather
- Ketones
- Strong acids
- Brake fluid

Operating Temperature:**
-10° to +300°F

PERFLUOROELASTOMER (FFKM, Kalrez®, Chemraz®)

FFKM combines the outstanding chemical resistance of FPM with the elastomeric properties of fluorocarbon rubber; it is virtually impervious to 1500+ different chemicals. There are several different grades of FFKM, but all contain fully fluorinated polymer chains and hence offer the ultimate performance of elastomers when considering heat and chemical resistance. FFKM is the compound of choice in aggressive process environments, such as chemical and hydrocarbon plants, where no other elastomer can withstand the highly corrosive fluids likely to be encountered. Other uses can be found in the semiconductor, aerospace, and pharmaceutical industries, in part due to FFKM’s superior resistance to outgassing.

Composition:
High density copolymer of tetrafluoroethylene and a perfluorinated ether.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Flame resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Water
- Oxidation
- Silicone oils
- Sunlight
- Air
- Alcohols
- Mineral oil
- Ethers
- LP gas
- Ketones
- Steam
- Aldehydes
- Concentrated acids
- Concentrated bases

Operating Temperature:**
-40° to +300°F

POLYACRYLATE RUBBER (ACM, polyacrylic rubber, Hycar®)

Polyacrylate rubber, or ACM, is a specialty rubber whose primary strength is its ability to withstand high heat while retaining oil resistance. It is often the material of choice for applications that involve sulfur bearing lubricants, which are finding increased usage in automotive applications, especially transmission seals. From a performance standpoint, ACM occupies an intermediate position between nitrile and fluorocarbon. In addition, polyacrylates exhibit good damping characteristics, and are not highly corrosive to steel, and can be compounded to provide excellent flex life and some degree of flame resistance. However, this acrylic based elastomer does have some limitations. Poor low temperature flexibility limits its usefulness and compression set is not as good as most other compounds. It is also inferior to many elastomers in tensile strength and water resistance.

Composition:
Medium density acrylic ester copolymer.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Flame resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Ozone
- Weather
- Sulfur containing oils
- Aliphatic solvents
- Dilute acids
- Dilute alcohols
- Water
- Steam

Operating Temperature:**
-5° to +350°F

POLYURETHANE (AU, EU, PU, Millathane®)

Polyurethane rubber is notable for its combination of hardness with elasticity, and outstanding abrasion resistance and tear strength. Elastomeric urethane rubber, not to be confused with thermoplastic polyurethane, may be formulated from either an ester (AU) or other (EU) base; it is often referred to as “millable gum” urethane. The ester based polymer is superior in resistance to abrasion and heat but tends to be hydroscopic, while the ether based polymer has better flexibility at low temperatures. Polyurethane is a rather expensive material, whose use is usually limited to applications that require a combination of its outstanding physical properties. Common end use applications are industrial rolls, O-Rings, caster wheels, gaskets, shoe soles and conveyer belts. Polyurethane is the most commonly employed cure system, but sulfur curing is also possible in the extremely complex vulcanization chemistry involved in polyurethanes.

Composition:
Low to medium density polyurethane diisocyanate.

Physical Properties:* Poor Fair Good Excellent
- Tensile strength
- Elongation
- Cold resistance
- Compression set
- Tear resistance
- Abrasion resistance
- Gas permeability

Chemical Resistance:* Poor Fair Good Excellent
- Ozone
- Weather
- Oxidation
- Silicone oils
- Sunlight
- Air
- Alcohols
- Mineral oil
- Ethers
- LP gas
- Ketones
- Steam
- Aldehydes
- Concentrated acids
- Concentrated bases

Operating Temperature:**
-40° to +180°F
Silicone does possess extraordinary resistance to oxidation and ozone. It can be improved somewhat by reinforcement with fine, high surface area "CHEM-RINGS," which are Teflon®-encapsulated O-Rings, with a silicone as bronze, graphite, glass, or molybdenum disulfide to counteract this behaviour substantially. Silicone also has relatively poor elasticity compared to other sealing materials. In addition to solid PTFE, RT Dygert also offers "CHEM-RINGS," which are Teflon®-encapsulated O-Rings, with a silicone or Viton® core, and normally covered with a Teflon outer jacket.

Composition:
- Fluorocarbon resin generally known as polytetrafluoroethylene

Physical Properties:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Elongation</th>
<th>Cold resistance</th>
<th>Compression set</th>
<th>Tear resistance</th>
<th>Abrasion resistance</th>
<th>Flame resistance</th>
<th>Gas permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Chemical Resistance:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Oxidation</th>
<th>Alcohols</th>
<th>Water</th>
<th>Glycol</th>
<th>Acetone</th>
<th>Steam</th>
<th>Weather</th>
<th>Air</th>
<th>Ozone</th>
<th>Detergent oils</th>
<th>Mineral oils</th>
<th>Silicone oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Operating Temperature:
- -300° to +500°F

STYRENE-BUTADIENE RUBBER

SBR, GR, Buna-S

SBR-Butadiene rubber is much like natural rubber in many of its properties, and is one of the lowest cost and highest volume elastomers available. Although its physical properties are somewhat less than natural rubber, SBR is tougher, and slightly more resistant to heat and flex cracking. Much of its usage is in tire treads, especially blended with other polymers. It can readily be substituted for natural rubber in many other applications, thereby achieving significant cost savings. SBR is sometimes referred to as "GSE" or Government Rubber-Styrene, as its development began as a wartime emergency, necessitated by an interrupted supply of natural rubber. SBR is actually a generic term covering a wide variety of synthetic rubbers differing not only in the styrene-butadiene ratio, but also in the type of polymerization by which they are made.

Composition:
- Low density copolymer of styrene and butadiene.

Physical Properties:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Elongation</th>
<th>Cold resistance</th>
<th>Compression set</th>
<th>Tear resistance</th>
<th>Abrasion resistance</th>
<th>Flame resistance</th>
<th>Gas permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Chemical Resistance:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Oxidation</th>
<th>Alcohols</th>
<th>Water</th>
<th>Glycol</th>
<th>Acetone</th>
<th>Steam</th>
<th>Weather</th>
<th>Air</th>
<th>Ozone</th>
<th>Detergent oils</th>
<th>Mineral oils</th>
<th>Silicone oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Operating Temperature:
- -50° to +225°F

VITON™ ETP (Viton® Extreme)

Viton® ETP, or Viton® Extreme, is resistant to the same fluids as other high fluorine FKM such as aliphatic and aromatic hydrocarbons, hydraulic fluids, motor oils, fuels, etc. However it is also resistant to all types of alcohols, steam, strong bases, and polar fluids such as potassium hydroxide, ketones, MTBE and complex solvent mixtures. In fact, Viton® ETP has the broadest fluid resistance of any FKM polymer on the market, making it ideal for severe service environments. Although costly, it can frequently be substituted for far more expensive perfluororubber elastomers, at a fraction of the cost.

Composition:
- High density terpolymer of ethylene, tetrafluoroethylene, and perfluoro(alkyl vinyl ether)

Physical Properties:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Elongation</th>
<th>Cold resistance</th>
<th>Compression set</th>
<th>Tear resistance</th>
<th>Abrasion resistance</th>
<th>Flame resistance</th>
<th>Gas permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Chemical Resistance:
- Poor
- Fair
- Good
- Excellent

<table>
<thead>
<tr>
<th>Organic acids</th>
<th>Amines</th>
<th>Alcohols</th>
<th>Acetone</th>
<th>Acetic acid (30%)</th>
<th>Acetaldehyde</th>
<th>Butyl acetate</th>
<th>Ethylene diamine</th>
<th>Glycol</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Operating Temperature:
- -10° to +400°F

* Excellent, good, fair and poor are intended to serve as general guidelines only. Actual testing in the application environment is always recommended.

** Operating temperature ranges are approximate and apply to medium hardness (~70 Shore A) compounds. Harder or softer compounds will have different temperature ranges.

© Registered Trademarks

Viton™ is a trademark of The Chemours Company FC, LLC, used under license by High Performance Seals/RT Dygert.
LIMITED WARRANTY High Performance Seals (“Seller”) warrants that its products (“Goods”) will perform in accordance with their specifications; that the goods will be free from manufacturing defects for a period of twelve (12) months from the date of delivery of the goods to Buyer; and that the goods will be as specified by Buyer in the purchase order. Seller should have the right to elect to either refund the purchase price for any defective goods or replace any defective goods, provided that the goods were used in the manner for which they were manufactured. Seller does not warrant that the goods are fit for any particular purpose. Seller should have no obligation to refund the purchase price or replace goods that are rendered defective by a Buyer or a third party after they leave Seller’s place of shipment.

LIMITED LIABILITY Seller’s liability for its goods is limited to their terms set forth in Seller’s express warranty set for above, in no event shall Seller’s liability exceed the total purchase order price. Seller is not assuming any liability for any indirect, collateral, special, incidental or consequential losses or damages suffered by Buyer, or by any end-user or other third party, including but not limited to, lost profits, loss of business reputation and/or lost business opportunity, for any possible cause of action or claim arising out of or related to the goods sold to Buyer, even if Seller has been advised of the possibility of such loss or damage.